Welcome to Nanalysis’ benchtop NMR Blog
We love benchtop NMR! In this blog section, you will find all things benchtop NMR. Please contact us if you would like to discuss about your project.
Category
NMR Topics
- 100 MHz NMR
- 11B NMR
- 129Xe NMR
- 13C NMR
- 19F NMR
- 19F NMR Spectroscopy
- 1H NMR
- 207Pb NMR
- 31P NMR
- 3H NMR
- 60 MHz NMR
- APT
- Agrochemicals
- Applications
- Batteries
- Biochemistry
- Biopolymers
- Botanicals
- COSY
- CPMG
- Caffeine Content
- Cannabis
- Chemical Analysis
- Cosmetics
- DEPT
- Dithiazine
- Drug Analysis
- Drug Discovery
- Dyes
- Edible Oils
- Educational NMR
- Energy
- Enzyme
- Exchangeable Protons
- Exchangeable protons
- Flavor and Fragrances
- Flow NMR
- Fluorine-19 NMR
- Food Science
- Food and Beverage
- Forensics
- Forestry
- HETCOR
- HMBC
- HSQC
- Hands-on Learning
- Heteronuclear J-coupling
- Hydrogen sulfide
- Hydroxyl value
- Hyphenated NMR
To D2O or not to D2O?
In the average case one can simply dissolve an analyte in an appropriate deuterated solvent and acquire a simple 1D spectrum to obtain all the required structural information. However, sometimes doing so may not provide you with all of the information you need!
'Hop' off the Diagonal: COSY spectrum of α-humulene
NMR spectroscopy is by far the most useful characterization technique in organic chemistry, especially if you have to elucidate the structure or configuration of your products. Arguably, 2D experiments such as COSY, HSQC, and HMBC have simplified this task tremendously. In this post I wanted to highlight the COSY of α-humulene. Read more.
What to expect: Chemical Shifts & Coupling Constants in Low-field NMR Spectroscopy
One of the questions that we always get at tradeshows and conferences is how our instrument compares to high-field data. There are significant inherent differences between low-field and high-field instruments, but the most important from a chemistry point of view are sensitivity (S/N) and resonance dispersion (signal separation). Read More.
Life is sweet….maybe too sweet!
Sugar substitutes are gaining more and more relevance due to the health problems associated with the consumption of high amounts of sugar...I thought it would be interesting to take a few of those substitutes and acquire their proton NMR spectrum in our benchtop NMR.
Process-NMR – Future key elements in the world of Process Analytical Technology (PAT)
What is process analytical technology (PAT) and why is it so important?PAT is an extremely powerful and useful tool for analyzing, optimizing and controlling chemical processes. Chemical, food and pharmaceutical industries could especially benefit from this technique. In earlier days, chemical processes were primarily monitored by physical techniques, such as temperature, pH, pressure etc..
The Dangers of Making Too Many Assumptions. Electronegativity, Acidity, and Chemical Shift
Last month (which you can see here), we learned about how an acidic proton behaves in a 1H NMR experiment, particularly when it’s surrounded by D2O. For example, when an H+ leaves CH3COOH to join an accommodating D2O molecule, the resulting acetate (H3CCOO–) segment is reasonably comfortable bearing that negative charge. This phenomenon is the reason the solution is “acidic” in the first place. But why is acetate so capable of dealing with this negative electronic charge?
To Decouple or Not to Decouple, that is the question. Also…Acids
Acidity is something that you encounter on a daily basis, probably without even realizing it. The tangy taste of an orange (citric acid), that Vitamin C tablet you took this morning (ascorbic acid), those terrible jeans from the 80’s that you still wear (acid wash). My favourite acid is acetic acid.