Welcome to Nanalysis’ benchtop NMR Blog
We love benchtop NMR! In this blog section, you will find all things benchtop NMR. Please contact us if you would like to discuss about your project.
Category
NMR Topics
- 100 MHz NMR
- 11B NMR
- 129Xe NMR
- 13C NMR
- 19F NMR
- 19F NMR Spectroscopy
- 1H NMR
- 1H NMR, 19F NMR
- 207Pb NMR
- 31P NMR
- 3H NMR
- 60 MHz NMR
- APT
- Agrochemicals
- Analytical Chemistry
- Applications
- Batteries
- Biochemistry
- Biopolymers
- Botanicals
- COSY
- CPMG
- Caffeine Content
- Cannabis
- Chemical Analysis
- Cosmetics
- DEPT
- Dithiazine
- Drug Analysis
- Drug Discovery
- Dyes
- Edible Oils
- Educational NMR
- Educational Videos
- Energy
- Enzyme
- Exchangeable Protons
- Exchangeable protons
- Fish Oils
- Flavor and Fragrances
- Flow NMR
- Fluorine-19 NMR
- Food Science
- Food and Beverage
- Forensics
- Forestry
- HETCOR
- HMBC
- HSQC
- Hands-on Learning
How does the lock work?
Magnets used to manufacture low-field and high-field NMR spectrometers are not perfect and the magnetic field that they generate is prone to drift for a variety of reasons. However, during an NMR experiment it is important to keep the magnetic field as stable as possible to prevent the signals from drifting. This is taken care of by the lock system.
Origin of Chemical Shifts
It is common to mention the frequency of an NMR instrument instead of its field. When someone says: I have in my laboratory a 100 MHz instrument, it means that a spectrometer where the protons precess with a frequency of 100 MHz (Lamour frequency) is available in the lab…
DEPT: A tool for 13C peak assignments
Distortionless Enhancement by Polarization Transfer (DEPT) is a double resonance pulse program that transfers polarization from an excited nucleus to another – most commonly 1H → 13C. This results in a sensitivity enhancement relative to the standard decoupled 1D carbon spectra (13C), which benefits only from the small Nuclear Overhauser Effect (NOE) enhancements.
Why does NMR have an inherently low sensitivity?
It is well known that NMR analysis requires a higher concentration of analyte than any other spectroscopic method. For example, UV-Vis requires an analyte concentration range of only nM to µM, while NMR typically requires the analyte to be in the mM range (>1000 times more concentrated!). In this blog, we will demonstrate why NMR is considerably less sensitive than UV-Vis. We have chosen UV-Vis for this comparison as it is widely recognized as one of the most sensitive spectroscopic techniques.
What you should know about signal dispersion in benchtop NMR
Do you know the difference between resolution and signal dispersion in NMR spectroscopy? Read our blog here.
Using NMR to observe the restricted rotation in amide bonds
NMR is a great tool for the analysis of molecular properties such as the amide bond, which has a restricted rotation around the C–N bond. In Biochemistry, the amide bond is referred to as the peptide bond. This bond is formed by the union of a carboxyl group of one amino acid with the amino group of another amino acid. Read more.
What to expect: Chemical Shifts & Coupling Constants in Low-field NMR Spectroscopy
One of the questions that we always get at tradeshows and conferences is how our instrument compares to high-field data. There are significant inherent differences between low-field and high-field instruments, but the most important from a chemistry point of view are sensitivity (S/N) and resonance dispersion (signal separation). Read More.
Beyond Structure Elucidation - Introduction to qNMR Part II - Calibrants
In this blog post, I will talk about how to select a suitable calibrant as well as the difference between using an internal and external calibrant. When conducting qNMR experiments, one of the first things that needs to be considered is how the calibrant is employed to quantitate your sample. Read more.
Carbon-13 Satellites and Molecule Symmetry in Maleic Acid
Symmetry is beauty. There are countless examples in nature, just think about honeycombs, flowers, starfish or….maleic acid! You probably can guess which of these examples will be the star in this blog post - no, sorry, it is not the starfish…
Beyond structural elucidation, introduction to qNMR – Part I
Over the last few years, more and more analytical and industrial laboratories have started employing quantitative nuclear magnetic resonance (qNMR) spectroscopy as a tool for content assignment (due to its superb structural elucidation abilities) and quantification of purity in a sample. Read more.